
MATH 245 F21, Exam 2 Solutions

1. Carefully define the following terms: Proof by Reindexed Induction, Big Omega (Ω)

To prove ∀x ∈ N, P (x) by reindexed induction, we must (base case) prove P (1) is true;
and (inductive case) prove ∀x ∈ N (with x ≥ 2), P (x− 1)→ P (x). Given two sequences
an, bn, we say that an = Ω(bn) if there is some M ∈ R and some n0 ∈ N such that for all
n ≥ n0, M |an| ≥ |bn|.

2. Carefully state the following theorems: Nonconstructive Existence theorem, well-ordered
by <

To prove ∃x ∈ D, P (x) by the Nonconstructive Existence theorem, we prove ∀x ∈
D, ¬P (x) ≡ F . Given a set S and an ordering <, we say that S is well-ordered by < if
every nonempty subset of S has a minimum element, in the < ordering.

3. Prove or disprove: For all x ∈ Z, there is at most one y ∈ Z with x = 3y2 + 1.

The statement is false. To disprove, we need a counterexample, which consists of a specific
x and two different y’s (all integers), where x makes the predicate true with both y’s.

COUNTEREX 1: Take x = 4, y1 = 1, y2 = −1. Then 4 = 3(1)2 + 1 = 3(−1)2 + 1.
COUNTEREX 2: Take x = 13, y1 = 2, y2 = −2. Then 13 = 3(2)2 + 1 = 3(−2)2 + 1.

4. Prove or disprove: For all x ∈ R, dxe ≤ bxc+ 1.

The statement is true. Let x ∈ R be arbitrary. One of the properties of floor gives
x < bxc + 1, and one of the properties of ceiling gives dxe − 1 < x. Combining, we get
dxe − 1 < bxc+ 1. Adding 1 to both sides gives dxe < bxc+ 2. Now we apply Thm 1.12
(which we can do since both dxe and bxc+ 2 are integers), to get dxe ≤ (bxc+ 2)− 1 =
bxc+ 1.

5. Use mathematical induction to prove: For all n ∈ N, n! ≥ n.

Base case: n = 1. We have 1! = 1, so n! = 1! = 1 ≥ 1 = n.
Inductive case: Let n ∈ N be arbitrary, and suppose that n! ≥ n. We multiply both
sides by (n + 1), getting (n + 1) · n! ≥ n(n + 1). Now, (n + 1) · n! = (n + 1)!, and
n(n + 1) ≥ 1(n + 1) = n + 1 (since n ≥ 1). We conclude (n + 1)! ≥ n + 1.

6. Solve the recurrence with initial conditions a0 = 1, a1 = 2, and recurrence relation an =
−4an−1 − 4an−2 (n ≥ 2).

Our characteristic polynomial is r2+4r+4 = (r+2)2. Hence there is a double root of −2,
and our general solution is an = A(−2)n +Bn(−2)n. We now apply the initial conditions
to get 1 = a0 = A(−2)0+B ·0·(−2)0 = A, and 2 = a1 = A(−2)1+B ·1·(−2)1 = −2A−2B.
This has solution {A = 1, B = −2}, so the specific solution is an = 1 · (−2)n− 2n(−2)n =
(−2)n + n(−2)n+1.



7. Let bn = 100 + 4n. Prove or disprove that bn = O(n).

The statement is true.

PROOF 1: Let M = 5, n0 = 100. Let n ≥ n0 = 100 be arbitrary. Add 4n to both sides,
getting 4n + n ≥ 4n + 100. Hence, |bn| = |100 + 4n| = 100 + 4n ≤ 4n + n = 5n = M |n|.
PROOF 2: Let M = 104, n0 = 1. Let n ≥ n0 = 1 be arbitrary. Multiply by 100 on both
sides, getting 100n ≥ 100. Add 4n to both sides, getting 100n + 4n ≥ 100 + 4n. Hence,
|bn| = |100 + 4n| = 100 + 4n ≤ 100n + 4n = 104n = M |n|.

8. Prove that, for all x ∈ R, |x|+ |x− 2| ≥ 2.

Let x ∈ R be arbitrary. We now have three cases, depending on whether x ≤ 0, or
0 < x ≤ 2, or x > 2. These are the three cases you must use to solve the problem
correctly (apart from the boundary points x = 0,x = 2, which you can change around).

Case x ≤ 0: |x|+ |x− 2| = −(x)− (x− 2) = −2x+ 2. Since x ≤ 0, we multiply by −2 to
get −2x ≥ 0. Adding 2, we get −2x + 2 ≥ 0 + 2 = 2. Hence |x|+ |x− 2| = −2x + 2 ≥ 2.

Case 0 < x ≤ 2: |x|+ |x− 2| = +(x)− (x− 2) = 2. (and 2 ≥ 2).

Case x > 2: |x|+ |x− 2| = +(x) + (x− 2) = 2x− 2. Since x > 2, we multiply by 2 to get
2x > 4. Adding−2 to both sides, we get 2x−2 > 4−2 = 2. Hence |x|+|x−2| = 2x−2 > 2,
and thus |x|+ |x− 2| ≥ 2.
(note that (a > b) ` (a > b) ∨ (a = b) by addition, and (a > b) ∨ (a = b) ≡ (a ≥ b)).

9. Prove: For all n ∈ Z with n ≥ 2, that Fn≥2Fn−2. (Here Fn denotes the Fibonacci numbers)
NOTE: Unfortunately, the exam as given had a typo, where Fn≥2Fn−2 was incorrectly
given as Fn > 2Fn−2. This ruins the second base case (everything else is fine). Any student
tripped up by this typo had their grade compensated.

Here we need strong induction and two base cases.

Base case n = 2: F2 = 1, F0 = 0, and hence F2 = 1 ≥ 0 = 2F0.
Base case n = 3: F3 = 2, F1 = 1, and hence F3 = 2 ≥ 2 = 2F1.

Inductive case: Let n ∈ Z with n ≥ 4, and suppose that the predicate is true for all smaller
n (that are at least 2). In particular, it is true for n− 1 and n− 2. Hence Fn−1 ≥ 2Fn−3

and Fn−2 ≥ 2Fn−4. We add these inequalities, getting Fn−1 + Fn−2 ≥ 2Fn−3 + 2Fn−4 =
2(Fn−3 +Fn−4). Now, we use the defining recurrence relation of Fibonacci numbers twice:
Fn−1 + Fn−2 = Fn, and Fn−3 + Fn−4 = Fn−2. Substituting, we get Fn ≥ 2Fn−2.

10. Use maximum element induction to prove that ∀x ∈ N,∃n ∈ N0, 2n ≤ x < 2n+1.

For any x ∈ N, set S = {n ∈ N0 : 2n ≤ x}. Note that S is nonempty, because 0 ∈ S
(since 20 = 1 ≤ x). The algebraically hard part of this problem is to prove that S has an
upper bound(*). Once we do this, then maximum element induction gives us a maximum
element n of S, such that n satisfies the predicate but n + 1 does not, i.e. 2n ≤ x and
2n+1 6≤ x. Combining, we get 2n ≤ x < 2n+1.

(*) To show that S has an upper bound: If 2n ≤ x, then n ≤ log2 x (since log2 is an
increasing function, we can apply it to both sides of the inequality). Hence log2 x is an
upper bound for S, because every n ∈ S must satisfy 2n ≤ x, and must therefore also
satisfy n ≤ log2 x.


